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Abstract
Transition rates for induced and spontaneous tachyon radiation in hydrogenic
systems as well as the transversal and longitudinal ionization cross sections
are derived. We investigate the interaction of the superluminal radiation field
with matter in atomic bound–bound and bound–free transitions. Estimates
are given for Ly-α transitions effected by superluminal quanta in hydrogen-
like ions. The tachyonic photoelectric effect is scrutinized, in the Born
approximation and at the ionization threshold. The angular maxima occur
at different scattering angles in the transversal and longitudinal cross sections,
which can be used to sift out longitudinal tachyonic quanta in a photon flux.
We calculate the tachyonic ionization and recombination cross sections for
Rydberg states and study their asymptotic scaling with respect to the principal
quantum number. At the ionization threshold of highly excited states of order
n ∼ 104, the longitudinal cross section starts to compete with photoionization,
in recombination even at lower levels.

PACS numbers: 03.65.Nk, 03.70.+k, 32.80.Rm, 02.30.Gp

1. Introduction

When considering superluminal quanta, we may try a wave theory or a particle picture as the
starting point. The latter has been studied for quite some time, but did not result in viable
interactions with matter [1–7]. Here, tachyons are modelled as wave fields with negative mass-
squared, coupled by minimal substitution to subluminal particles. Interaction with matter is
indeed the crucial point, we maintain the best established interaction mechanism, minimal
substitution, by treating tachyons like photons with negative mass-squared, a real Proca field
minimally coupled to subluminal matter [8–10].

The superluminal energy flux can be split into a transversal and a longitudinal component,
and the different polarizations are quantized in different statistics to obtain a positive definite
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energy operator; transversal quanta are bosonic and longitudinal ones are fermionic. The spin-
statistics theorem and most other quantum field theoretic no-go theorems are not applicable
outside the lightcone, as they are based on microcausality, which means, in a relativistic
context, on the non-existence of superluminal signal transfer [11]. This theory of superluminal
radiation is non-relativistic, based on an absolute cosmic spacetime conception, which is
crucial to maintain causality [12–14]. The superluminal modes are coupled to a Klein–Gordon
field, a scalar subluminal particle in a Coulomb potential. We derive the T-matrix elements
of the interaction operator, in effect, the tachyonic Einstein coefficients. The minimally
coupled radiation field is treated perturbatively in linear order, as suggested by the very small
tachyonic interaction constant, the ratio of tachyonic and electric fine structure constants
being αq/αe ≈ 1.4 × 10−11. The electromagnetic second-order contribution overpowers the
tachyonic counterpart by some 22 orders, so that elementary statistical procedures such as
detailed balancing are sufficient for the second quantization of the interaction. Linearization
on account of the tiny interaction is used throughout; there is no need to develop a perturbation
theory beyond the linear order. One can also reckon that the Lagrangian of the Proca field is
itself just the linearization of a nonlinear Born–Infeld type of Lagrangian, as this seems to be
the most straightforward way to achieve a finite classical self-energy.

This paper is about the interaction of superluminal radiation modes with energy levels of
hydrogen-like ions. The emphasis is on the actual transition rates and cross sections, bound–
bound and bound–free, in both directions, ionization and recombination. In which energy
range can superluminal and in particular longitudinal radiation emerge? Is the longitudinal
component completely overpowered by transversal electromagnetic radiation? Not so, we
give quantitative estimates in this regard.

In section 2, we derive the transition rates for bound–bound transitions in hydrogen-
like ions, effected by longitudinal and transversal superluminal quanta. This, after having
outlined the coupling of the tachyonic radiation field to a relativistic spinless charge in a
Coulomb potential and the set-up of second quantization, to keep the paper self-contained.
We elaborate on transition rates in dipole approximation, on the Einstein A- and B-coefficients,
on spontaneous and induced radiation outside the lightcone, and we compare tachyonic Ly-α
transitions to electromagnetic ones.

The main emphasis is on tachyonic ionization; in section 3 we discuss ground state
ionization. The interaction of tachyons with low energy particles can result in very speedy
superluminal quanta, in contrast to high energy interactions, where the energy transfer is at
best moderate so that the superluminal velocities are always close to the speed of light. The
focus, therefore, is not the Born approximation, which requires energies far higher than the
ionization threshold, but we rather investigate the threshold itself in dipole approximation.
Extremely low energy transfer, with electronic ejection energies close to zero, is also the topic
of section 4, where we study ionization of Rydberg states. The differential cross sections can
be used to separate transversal and longitudinal radiation. The peaks of the transversal and
longitudinal cross sections are located at noticeably different scattering angles, the transversal
maximum coincides with the longitudinal minimum.

In section 4, we discuss the Born and dipole approximations of the ionization cross
sections of Rydberg states. Bound states with quantum numbers n ∼ 100 and beyond are of
particular interest with regard to tachyonic ionization and recombination, as their ionization
energy is singularly small, which means tiny energy transfer and high superluminal velocities
if the energy of the free electron is close to zero. More importantly, the n-scaling of the
longitudinal cross section at the ionization threshold is key to overcoming the very small ratio
of tachyonic and electric fine structure constants in search for the longitudinal radiation. We
restrict ourselves to s-states, though there is no real obstacle to considering non-zero angular
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momentum. The ionization cross sections depend on two asymptotic parameters, the quantum
number n of the s-state and the kinetic energy of the ejected electron. The wavefunctions of
hydrogenic Rydberg states are essentially Laguerre polynomials of order n, and the matrix
elements in the cross sections are composed of hypergeometric polynomials of the same order.
Approximations of these polynomials are calculated in the appendix. In section 5, we present
our conclusions.

2. Tachyonic emission and absorption rates in hydrogenic systems

We consider a subluminal, spinless quantum particle, coupled by minimal substitution to
the tachyonic vector potential: L = LP + Lψ , where LP = − 1

4FαβFαβ + 1
2m2

t AαAα is the
Lagrangian of the superluminal Proca field, and Lψ is the Klein–Gordon Lagrangian including
the interaction terms,

Lψ := c−2∂A
t ψ∂A∗

t ψ∗ − ∇Aψ∇A∗ψ∗ − (mc/h̄)2ψψ∗,

∂A
t := ∂t + ih̄−1V − iq̃A0, ∇A := ∇ − iq̃A, V := −Ze2/(4πr).

(2.1)

The tachyon mass mt has the dimension of an inverse length, a shortcut for mtc/h̄. In Lψ , we
have included a time-independent potential V, exemplified as attractive Coulomb potential,
which is treated non-perturbatively. The expansion is in q̃ := q/(h̄c), where q is the tachyonic
charge of the subluminal particle by which it couples to the superluminal radiation field. The
Hamiltonian corresponding to (2.1) reads

Hψ = c2ππ∗ + i(q̃A0 − h̄−1V )ψπ − i(q̃A0 − h̄−1V )ψ∗π∗ + ∇Aψ∇A∗ψ∗ + (mc/h̄)2ψψ∗.
(2.2)

Subtracting the free Klein–Gordon Hamiltonian,

H free
ψ = c2ππ∗ − ih̄−1V ψπ + ih̄−1V ψ∗π∗ + ∇ψ∇ψ∗ + (mc/h̄)2ψψ∗, (2.3)

we find the interaction Hamiltonian expanded in first order in the tachyon charge,

H int
ψ := Hψ − H free

ψ = −iq̃c−2A0ψ
∗(ψ,t + ih̄−1V ψ) + iq̃c−2A0ψ(ψ∗

,t − ih̄−1V ψ∗)

+ iq̃Aψ∗∇ψ − iq̃Aψ∇ψ∗ + O(q̃2). (2.4)

The energy density of the free matter field follows from H free
ψ ,

ρfree
ψ := c−2ψ,tψ

∗
,t − c−2h̄−2V 2ψψ∗ + ∇ψ∇ψ∗ + (mc/h̄)2ψψ∗. (2.5)

We use ∇ψ∇ψ∗ = −ψ∗�ψ , partially integrated, as well as the free field equation,

c−2(∂/∂t + ih̄−1V )2ψ − �ψ + (mc/h̄)2ψ = 0, (2.6)

to write the energy density as

c2ρfree
ψ = ψ,tψ

∗
,t − ψ∗ψ,tt − 2ih̄−1V ψ∗ψ,t . (2.7)

The non-relativistic limit of (2.6), the Schrödinger equation in a Coulomb potential, is
recovered by the substitution ψ → h̄(2m)−1/2ψ exp(−imc2t/h̄) in the Lagrangian (2.1).
The non-relativistic interaction is found by the same substitution in (2.4), cf [15].

We define the scalar product,

〈ψ, ϕ〉 := i
∫

(ϕ∗∂V
t ψ − ψ∂V ∗

t ϕ∗) d3x, ∂V
t := ∂t + ih̄−1V, (2.8)

and note the continuity equation, ρ,t + div j = 0, with the 4-current

ρ(ψ, ϕ) := iq(ϕ∗∂V
t ψ − ψ∂V ∗

t ϕ∗), j(ψ, ϕ) := −iqc2(ϕ∗∇ψ − ψ∇ϕ∗), (2.9)
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where ψ and ϕ are arbitrary wave fields solving the wave equation (2.6). We insert the
separation ansatz ψi = ui exp(−iωit) into the field equation (2.6) and the current (2.9),
and define the shortcuts ρ(ψm,ψn) =: ρmn exp(−iωmnt) and j(ψm,ψn) =: jmn exp(−iωmnt),
where ωmn := ωm − ωn. In this way, we find the time separated wave equation

�ui = ((mc/h̄)2 − c−2(ωi − h̄−1V )2)ui, (2.10)

the matrix elements

ρmn = q(ωm + ωn − 2h̄−1V )umu∗
n, jmn = −iqc2(u∗

n∇um − um∇u∗
n), (2.11)

and the orthonormality relation
∫

ρmn d3x = qδmn, where we use a normalization convenient
for second quantization. The foregoing derivations apply to more or less any time independent
potential V, no need for the spherical symmetry, just that the spectrum of (2.10) stays bounded
from below. We do not elaborate on the continuous spectrum here, assuming box quantization.
Scattering states are studied in section 3, more or less on the same footing.

We consider a free wave field, ψ = √
h̄c

∑
n bnun e−iωnt , with arbitrary complex

amplitudes bn and positive frequencies ωn, substitute it into the energy density ρfree
ψ in (2.7),

and find the field energy as E = ∫
ρfree

ψ d3x = ∑
n h̄ωnbnb

∗
n, where we made use of the

orthonormality condition stated after (2.11). We restrict ourselves to positive frequency
solutions, antiparticles can be dealt with analogously, there are no tachyonic antiparticles by
the way, the superluminal Proca field is real. In (2.9), we put ϕ = ψ and expand density and
current

ρ(ψ) = h̄c2
∑
m,n

bmb∗
nρmn e−iωmnt , j(ψ) = h̄c2

∑
m,n

bmb∗
njmn e−iωmnt , (2.12)

with ρmn and jmn as in (2.11). We substitute these series into the interaction Hamiltonian (2.4),

H int
ψ = − 1

h̄c3
(A0ρ(ψ) + Aj(ψ)), (2.13)

together with the Fourier series of the tachyon field,

A(x, t) = L−3/2
∑

k

(Â(k) exp(i(kx − ωt)) + c.c.), Â(k) :=
3∑

λ=1

εk,λâ(k, λ), (2.14)

where k := 2πn/L. The summation is over integer lattice points n in R3, corresponding
to periodic boundary conditions. The εk,1 and εk,2 are arbitrary real unit vectors (linear
polarization vectors) orthogonal to εk,3 := k0 = k/|k|, so that the εk,λ constitute an
orthonormal triad, and the â(k, λ) are arbitrary complex numbers. The amplitudes Â can be
arbitrarily prescribed, the time component A0 of the potential is then determined by the Lorentz
condition and the free field equations, and so is the dispersion relation, k2 = ω2/c2 + m2

t . We
split the potential into transversal and longitudinal components,

ÂT(k) :=
∑
λ=1,2

εk,λâ(k, λ), ÂT
0 = 0, (2.15)

ÂL(k) := k0â(k, 3), ÂL
0 (k) = −c2kω−1â(k, 3); (2.16)

this decomposition is unique, as there is no gauge freedom. It is understood that ω(k) solves
the mentioned dispersion relation. The time averaged energy densities of the wave fields
(2.15) and (2.16) read〈

ρT
E

〉 = 2c−2
∑

k;λ=1,2

ω2ââ∗,
〈
ρL

E

〉 = −2m2
t

∑
k

â(3)â∗(3). (2.17)
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The averaging is essential to cancel the indefinite terms in the classical densities, mixtures
of transversal and longitudinal modes. It is the time averaged energy densities rather than
the classical Hamiltonian, that are quantized [15]. To this end, we introduce rescaled Fourier
coefficients,

â(k, λ) =: 2−1/2ch̄1/2ω−1/2ak,λ, â(k, 3) =: 2−1/2h̄1/2ω1/2m−1
t ak,3, (2.18)

λ = 1, 2, so that the field energy gets a familiar shape〈
ρT

E

〉 =
∑

k;λ=1,2

h̄ωkak,λa
∗
k,λ,

〈
ρL

E

〉 = −
∑

k

h̄ωkak,3a
∗
k,3. (2.19)

The Fourier coefficients ak,λ are interpreted as operators, and the complex conjugates a∗
k,λ

as their adjoints a+
k,λ. We use commutation relations for the transversal degrees, λ = 1, 2,

and anticommutators for the longitudinal modes, to turn the longitudinal energy in (2.19) into
a positive definite operator. The fact that Fermi statistics is invoked to quantize a spin-one
field in 4D seems strange at first sight, but the spin-statistics theorem is not applicable outside
the light cone [3]. The occupation number representations of the energy densities can be
found in [16], the vacuum is defined with regard to the universal rest frame, the comoving
galaxy frame. The absolute spacetime defined by this reference frame is already required at
the classical level [17], as the causality of the superluminal signal transfer is subject to the
universal cosmic time order [12]. The galaxy frame is the rest frame of the cosmic absorber
medium, the cosmic ether, a prerequisite for retarded wave propagation outside the light cone
[13, 14]. The transversal Hamilton operator of the free tachyon field is

〈
ρT

E

〉
in (2.19), with

the Fourier amplitudes ak,λa
∗
k,λ replaced by the operator products a+

k,λak,λ, the transversal
modes being bosonic as in the zero-mass limit. The longitudinal energy operator is defined
by the fermionic substitution ak,3a

∗
k,3 → −a+

k,3ak,3 in
〈
ρL

E

〉
. To obtain the interaction operator,

cf (2.13), we replace the amplitudes bmb∗
n of the Klein–Gordon field in (2.12) and (2.13) by

bosonic operator products b+
nbm. Similarly, the tachyonic field amplitudes a

(∗)
k,λ are replaced

by bosonic or fermionic operators a
(+)
k,λ, as in the energy densities (2.19).

To sum up, there are three major deviations from the standard quantization procedure.
Two of them are technical, the third is not, implying an absolute, non-relativistic spacetime
conception to cope with superluminal quanta. First, the time averaged energy density rather
than the classical Hamiltonian is taken as the starting point for the operator interpretation.
Second, Fermi statistics is employed for the longitudinal modes of an integer spin field in 4D,
and third, the vacuum state is defined with respect to the universal frame of reference, the
absolute cosmic spacetime as manifested in the cosmic background radiations, the expanding
galaxy grid, and the absorber medium.

We turn to the actual calculation of the transition rates, beginning with the transversal
fields AT, A0 = 0, cf (2.14) and (2.15), in a fixed linear polarization λ (that is, no summation
over λ in (2.15)). The transversal component of the interaction Hamiltonian (2.13) reads
H T

int := −h̄−1c−3ATj(ψ). We substitute the Fourier decompositions (2.14), (2.15), (2.18) and
(2.12) into

∫
H T

int d3x, and replace the amplitudes by operators b
(+)
i and a

(+)
k,λ. In this way, the

T-matrix elements for absorption and emission can readily be identified as

〈
T T

abs/em

〉 = − h̄1/2

√
2ω

1/2
k L3/2

∫
εk,λjmn e±ikx d3x. (2.20)

This corresponds to the absorption or emission of a transversal tachyon, cf [15] for details,
where the interaction with a non-relativistic particle in a Coulomb potential was studied. The
transition matrix for the interaction of tachyons with a free Klein–Gordon particle has been
derived in [16]; we outline the changes necessary to incorporate the Coulomb potential and state
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the transition probabilities, mostly without derivation. The matrix elements
〈
T T

abs,em

〉
in (2.20)

only differ by a sign change in the exponential; the upper sign always refers to absorption.
The tachyonic wave vector k relates to the tachyonic frequency ωk by the dispersion relation
stated before (2.15); the ωk are positive, and the ωmn := ωm − ωn refer to energy levels of the
wave equation, cf (2.10). The initial state is denoted by a subscript m and the final state by n,
so that a positive ωmn stands for emission.

The longitudinal component of the interaction (2.13) reads H L
int = H

L(1)
int + H

L(2)
int , where

H
L(1)
int = −h̄−1c−3ALj(ψ) and H

L(2)
int = −h̄−1c−3A0ρ(ψ), with the Fourier series of AL and

A0 defined in (2.14), (2.16) and (2.18). By substituting these series into
∫

H
L(1)
int d3x and∫

H
L(2)
int d3x, we find the respective T-matrix components,

〈
T

L(1)
abs/em

〉 = − h̄3/2ω
1/2
k√

2mtc2L3/2

∫
k0jmn e±ikx d3x,

〈
T

L(2)
abs/em

〉 = h̄3/2k√
2mtω

1/2
k L3/2

∫
ρmn e±ikx d3x.

(2.21)

We have here restored the mass unit, mt → mtc/h̄, and k0 = k/k is the tachyonic unit wave
vector. The longitudinal T-matrix,

〈
T L

abs/em

〉 = 〈
T

L(1)
abs/em

〉
+

〈
T

L(2)
abs/em

〉
, can be further simplified.

To this end, we return to (2.8)–(2.11), and inspect the integral
∫

(um�u∗
n − u∗

n�um) e±ikx d3x,
once by applying the Gauss theorem, and once by employing the field equation (2.10). By
making use of the continuity equation as stated after (2.8), we readily derive k0jmn e±ikx =
∓k−1ωmnρmn e±ikx, valid under the integral sign, that is, up to a divergence. In this way, we
can express the longitudinal T-matrix by the charge density only,〈

T L
abs/em

〉 = mtc
2

√
2h̄1/2ω

1/2
k kL3/2

∫
ρmn e±ikx d3x, (2.22)

where we used energy conservation, ωk = ∓ωmn, as well as the tachyonic dispersion relation
k2 = ω2/c2 + (mtc/h̄)2.

We return to the transversal transition matrix (2.20). Once this matrix is known, the
transition rate for the transversally induced absorption and emission in a given polarization λ

is obtained by a standard procedure [18],

dw
T,ind
abs/em ∼ 1

8π2

k

h̄c2

1

eβh̄ω − 1

∣∣∣∣
∫

εk,λjmn e±ikx d3x

∣∣∣∣
2

d�, (2.23)

where ω (as well as k(ω)) is taken at |ωmn|. The upper sign refers to absorption, and m to the
initial state; the solid angle element, d� = sin θ dθ dϕ, is centred at the tachyonic wave vector
k. The emission rate (2.23) also applies to spontaneous radiation, if the factor (eβh̄ωk − 1)−1

(the averaged occupation number) is dropped, dw
T,sp
em ∼ (eβh̄ω −1) dwT,ind

em . The total emission
rate is dwT

em = dwT,ind
em + dw

T,sp
em . The spontaneous transversal emission rate is temperature

independent, unaffected by the tachyonic heat bath, in contrast to the longitudinal emission
discussed below. The rates for unpolarized radiation are obtained by replacing εk,λjmn in
(2.23) by the transversal current, cf (2.11),

jT
mn := −iqc2(u∗

n∇Tum − um∇Tu∗
n), ∇T := ∇ − k0(k0 · ∇), (2.24)

with k0 := k/k. The spontaneous emission rate is time symmetric, applying to tachyon
absorption as well.

The longitudinal transition rate is assembled with
〈
T L

abs/em

〉
in (2.22),

dw
L,ind
abs/em ∼ 1

8π2

m2
t c

2

h̄3k

1

eβh̄ω + 1

∣∣∣∣
∫

ρmn e±ikx d3x

∣∣∣∣
2

d�. (2.25)
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Here, m denotes the initial state, both for absorption and emission, and ω = |ωmn|.
The total emission rate reads as dwL

em = dw
L,sp
em,T =0 − dwL,ind

em , with dwL,ind
em in (2.25) and

dw
L,sp
em,T =0 := (eβh̄ω + 1) dwL,ind

em , the latter being the spontaneous transition rate in the zero

temperature limit [15]. At finite temperature, the spontaneous emission rate is dw
L,sp
em =

dw
L,sp
em,T =0 − 2dwL,ind

em , so that the total emission reads dwL
em = dwL,ind

em + dw
L,sp
em . Hence,

dwL,sp
em ∼ (eβh̄ω − 1) dwL,ind

em = tanh(βh̄ω/2) dw
L,sp
em,T =0. (2.26)

The time symmetry of the transition rates also extends to the longitudinal radiation; they stay
invariant with regard to an interchange of the indices m and n (representing initial and final
states) accompanied by a sign change of the wave vector k. The longitudinal emission (2.26)
is temperature dependent and vanishes in the high-temperature limit.

The dipole approximation of the tachyonic transition rates (2.23) and (2.25) allows a
quantitative comparison with electromagnetic radiation, avoiding the explicit evaluation of
matrix elements; otherwise this has to be done on a case by case basis, for each transition. We
start with

∫
(um�u∗

n − u∗
n�um)x d3x, apply the Gauss theorem once and the time separated

field equation (2.10) once, and find, cf (2.24),∫
j(T)
mn d3x = −iωmnd(T)

mn, dmn :=
∫

ρmnx d3x, dT
mn := dmn − k0(k0dmn). (2.27)

We consider unpolarized transversal radiation, replacing in the transition rate (2.23) εk,λjmn

by the transversal current jT
mn. In (2.23) we drop the exponential, and in the longitudinal rate

(2.25) we expand it in first order and substitute the dipole moment (2.27), so that the angular
integrations can readily be carried out by making use of

∫
sin2 θ d� = 8π/3. Hence,∫ ∣∣∣∣

∫
jT
mn d3x

∣∣∣∣
2

d� = 8π

3
ω2

mn|dmn|2,
∫ ∣∣∣∣

∫
ρmnkx d3x

∣∣∣∣
2

d� = 4π

3
k2|dmn|2, (2.28)

from which the dipole approximation of the induced rates (2.23) and (2.25) follows,

w
T,ind
abs/em ∼ 4

3

|dmn|2
4π

kω2

h̄c2

1

eβh̄ω − 1
, w

L,ind
abs/em ∼ 2

3

|dmn|2
4π

m2
t c

2k

h̄3

1

eβh̄ω + 1
. (2.29)

The spontaneous dipole emission rates read w
T,sp
em ∼ (eβh̄ω − 1)wT,ind

em , cf after (2.23), and
w

L,sp
em ∼ (eβh̄ω − 1)wL,ind

em , cf (2.26). We thus find the ratios,

wL
abs

wT
abs

∼ wL
em

wT
em

∼ 1

2
tanh

(
βh̄ω

2

)
m2

t c
4

h̄2ω2
, (2.30)

for induced as well as spontaneous radiation. The dipole rates (2.29) refer to a transition
frequency ω = |ωmn|, they are angular integrated, and the transversal radiation is unpolarized.
The electromagnetic transition rates w

ph,ind
abs/em are recovered from the transversal rates by

dropping the tachyon mass in the wave vector and replacing the tachyonic charge q in the
dipole moment by its electric counterpart. Hence,

wT

wph
∼ q2

e2

√
h̄2ω2 + m2

t c
4

h̄ω
(2.31)

is valid for induced and spontaneous radiation alike. The following estimates are based on the
dipole approximations (2.30) and (2.31), the tachyon mass mt ≈ 2.15 keV/c2, and the ratio
q2/e2 ≈ 1.4 × 10−11 of tachyonic and electric fine structure constants. (The latter are upper
bounds inferred from Lamb shifts in hydrogen and hydrogen-like ions [10].) The peak of the
longitudinal spectral density of a free tachyon gas is located at βhνmax ≈ 2.218; this frequency
also lies, for any temperature, in the bulk of the photon and transversal tachyon distributions.
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Assuming that equilibrium has been reached, we may identify the Ly-α lines of hydrogen
(10.2 eV) with the spectral peak νmax, corresponding to a temperature of kT (νmax) ≈ 4.6 eV.
We thus find wL/wT(νmax) ≈ 1.8 × 104 and wT/wph(νmax) ≈ 3.0 × 10−9. For comparison,
the Ly-α1 transition in hydrogenic uranium (νmax = 0.23 MeV) results in a temperature of
kT (νmax) ≈ 0.1 MeV, so that wL/wT(νmax) ≈ 3.6 × 10−5 and wT/wph(νmax) ≈ 1.4 × 10−11.
Clearly, something has to be done to overcome the tiny ratio of the fine structure constants. In
section 4 we invoke Rydberg states to that effect.

3. Transversal and longitudinal ionization cross sections

We study tachyonic photoelectric effect, the ejection of a bound electron into the continuum
by the tachyon absorption. We start with the transition rates [15],

w
T,L
abs ∼

t→∞
nk

th̄2

∑
kn

∣∣〈T T,L
abs

〉∣∣2
∣∣∣∣
∫ t/2

−t/2
e−i(ωmn+ωk)t dt

∣∣∣∣
2

∼ 2πnk

h̄2c2

L3

(2π)3

∫
d�

∫ ∞

mc2/h̄

∣∣〈T T,L
abs

〉∣∣2
δ(ωm − ωn + ωk)knωn dωn, (3.1)

where we replaced the summation over the electronic wave vectors by the continuum limit,
L3(2π)−3

∫
dkn, and used the subluminal dispersion relation, k2

n = ω2
n/c

2 − (mc/h̄)2, to
obtain dkn = c−2knωn dωn d�. The occupation numbers nk refer to the incident tachyon
flux, and the absorption rates are readily assembled by means of the transition matrices (2.20)
and (2.22),

dwT
abs ∼ nk

8π2

1

h̄c2

knωn

ωk

d�

∣∣∣∣
∫

εk,λjmn eikx d3x

∣∣∣∣
2

, (3.2)

dwL
abs ∼ nk

8π2

m2
t c

2

h̄3

knωn

k2ωk

d�

∣∣∣∣
∫

ρmn eikx d3x

∣∣∣∣
2

, (3.3)

with ωn = ωm + ωk substituted. The current density of the tachyon flux is υgrnk/L
3, with

υgr = c2k/ωk , so that the cross sections relate to the absorption rates as

dσ T,L = L3ωk

c2knk
dw

T,L
abs . (3.4)

In section 2 and in (3.1)–(3.3), we have denoted the electronic parameters of the final
state, the ejected electron, by a subscript n, such as kn and ωn. In the following explicit
calculations, we use a subscript e instead, so that ue stands for the wavefunction of the final
electronic state. (When studying Rydberg states in section 4, we use the subscript n to label
the principal quantum number of the initial bound state, therefore this change of notation.)
The initial electronic bound state is indicated, throughout this section, by a subscript m or a
subscript zero, if we consider the ground state. The quantities k and ωk always refer to the
ionizing or, in recombination, emitted tachyon. We content ourselves with the non-relativistic
version of the cross sections (3.4). In fact, the most interesting interaction takes place at the
ionization threshold, where the ejected electron has nearly zero energy, cf section 4. Here, we
discuss ground state ionization in Born and dipole approximations.

We start with the Born (plane wave) approximation. In this limit, the cross sections are
fairly easy to derive, and we study their scaling with the tachyonic and electric fine structure
constants, as well as their dependence on the tachyon mass. The current in (3.2) reads
jmn = −iqc2(u∗

e∇um − um∇u∗
e ), cf (2.11). The initial bound state um is taken as a solution

of the Schrödinger equation in a Coulomb potential, normalized to
∫ |um|2 d3x ≈ h̄/(2mc2),
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cf after (2.11). We approximate h̄ωm ≈ mc2 − Em, where Em is the non-relativistic bound
state energy, defined positive. The ionization energy of the ground state is E0 = mc2α2

Z

/
2,

where αZ ≈ Z/137. The final state in the continuum is approximated by a plane wave,
ue ≈ (2ωe)

−1/2L−3/2 eikex, which amounts to dropping the Coulomb potential in the wave
equation (2.10) and to using box-integration when normalizing. The criterion for the
applicability of the Born approximation in a Coulomb potential reads αZ = Ze2/(4πh̄c) �
υe/c, where υe is the speed of the ejected electron, υe/c � 1. Thus, E0 � mυ2

e

/
2,

and we may approximate h̄ωe ≈ mc2 + mυ2
e

/
2 and h̄ke ≈ mυe. This is equivalent to

1
2 |V (rB)| = E0 � h̄ωk , with rB := h̄/(mcαZ) and V as in (2.1), since energy conservation
requires ωe = ωm + ωk , which allows us to approximate h̄ωk ≈ mυ2

e

/
2. This condition,

E0 � h̄ωk , defines a lower bound on the tachyonic frequency for the Born approximation to
be valid, in addition to h̄ωk � mc2.

To obtain the transversal cross section, we substitute

εk,λjmn eikx ≈
√

2L−3/2ω−1/2
e qc2εk,λkeum ei(k−ke)x (3.5)

into the absorption rate (3.2). This identity is valid, up to a divergence, for the transversal
degrees λ = 1, 2, and we arrive at

dσ T
λ ∼ 1

π

q2

4π

ke

h̄k
(εk,λke)

2 d�

∣∣∣∣
∫

um ei(k−ke)x d3x

∣∣∣∣
2

, (3.6)

which accounts for the ionization by linearly polarized transversal tachyons. To find the
transversal polarization average, we replace εk,λjmn in (3.2) by the transversal current jT

mn, cf
(2.24), and multiply dwT

abs by a factor of 1/2. Accordingly, the unpolarized transversal cross
section is obtained by replacing (εk,λke)

2 in (3.6) by 1
2 (ke − k0(k0ke))

2 ≡ 1
2k2

e sin2 θ , where
the tachyonic unit wave vector, k0 = k/k, defines the polar axis.

To proceed further, we have to specify the bound state um. We consider the simplest
case, the ground state eigenfunction, u0 = (

2πr3
Bmc2

/
h̄
)−1/2

e−r/rB . The integration in (3.6)
is readily done,∫

u0 ei(k−ke)x d3x ≈ 8π

rB

1(
2πr3

Bmc2
/
h̄
)1/2

1

k4
e

(
1 + 4

kek
k2

e

)
, (3.7)

where we expanded in k/ke as well as 1/(kerB). Hence,

dσ T
λ ∼ 25αqh̄

sin2 θ cos2 ϕ

mcr5
Bk5

e k

(
1 + 8

k

ke
cos θ

)
d�, (3.8)

where αq := q2/(4πh̄c) ≈ 1.0 × 10−13 is the tachyonic fine structure constant, cf after
(2.31). As cos θ = k0ke,0, we can write εk,λke,0 = sin θ cos ϕ in polar angles. The subscript
zeros denote unit vectors, and λ labels the two linear polarizations. The Born approximation
and the non-relativistic limit require kerB ≈ υe/(cαZ) 
 1, cf after (3.4). The tachyonic
dispersion relation gives h̄k ≈ ε/c, where ε2 = (

mυ2
e

/
2
)2

+ m2
t c

4, cf after (2.14). Since
mt/m ≈ 1/238 < αZ , we have υe/c 
 mt/m, and thus k/ke ≈ ε/(mcυe) � 1, which
justifies the expansions in (3.7). The two energies determining ε can be of comparable
magnitude, as illustrated in the example below, after (3.15). The photonic cross section dσ

ph
λ

is recovered from (3.8) by dropping the mass term in the tachyonic wave vector k and by
replacing αq → αe.

In the longitudinal absorption rate (3.3), we may approximate ρmn ≈ q(ωm + ωe)umu∗
e , cf

(2.11), to obtain the longitudinal cross section, cf (3.4),

dσ L ∼ 1

π

q2

4π

m2
t m

2c4

h̄5

ke

k3
d�

∣∣∣∣
∫

um eikx(e−ikex + ψ∗
ke

)
d3x

∣∣∣∣
2

. (3.9)
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The plane wave approximation is not quite sufficient for the longitudinal radiation, and we
have indicated the first-order correction in αZ , satisfying

(
� + k2

e

)
ψke = −2e−µr+ikex/(rrB).

Here, an exponential convergence factor has temporarily been inserted into the Coulomb
potential. We multiply this equation with e−iqx, integrate spatially, and make use of∫

r−1 e−µr−iqx d3x = 4π(q2 + µ2)−1 to find, in momentum space,

ψ̂ke(q) = 8π

rB

1

(q − ke)2(q2 − k2
e)

. (3.10)

The convention for Fourier transforms is ψ̂k(q) := ∫
ψk(x) e−iqx d3x. The wavefunction,

(2π)3δ(q − ke) + ψ̂ke(q), is normalized to (2π)3δ, up to terms of O(α2
Z), like the plane

wave. The Fourier transform of the ground state u0, cf before (3.7), is readily obtained via∫
e−µr−iqx d3x = 8πµ(q2 + µ2)−2. This is apparently a limit definition, (2π)3δ(q, µ → 0),

of the δ-function, which can be used to approximate the exact Fourier transform

û0(q) = 8π

rB

(
2πr3

Bmc2
/
h̄
)−1/2(

q2 + r−2
B

)2 . (3.11)

In this way, a cumbersome convolution can be greatly simplified in the momentum space
representation of the matrix element∫

u0 eikx(e−ikex + ψ∗
ke

)
d3x ≈ (

2πr3
Bmc2

/
h̄
)−1/2 16π

rB

kek
k6

e

. (3.12)

Here, we have again expanded in k/ke and 1/(kerB). Substituting this into (3.9), we find the
longitudinal cross section

dσ L ∼ 27αq
m2

t mc3

r5
Bh̄3kk9

e

cos2 θ d�, (3.13)

where cos θ = k0ke,0, as above.
We turn to the extrema of dσ T,L/dθ dϕ. The maximum of the transversal section (3.8)

(with the relativistic k/ke-correction dropped) and the longitudinal minimum, cf (3.13), occur
at θT

max ≈ θL
min ≈ π/2. The longitudinal maxima are the roots of sin θL

max = 1/
√

3, that
is, θL

max ≈ 0.6155 and π − θL
max. Thus the peaks of the longitudinal section (3.13) occur

at scattering angles of 35.3◦ and 144.7◦ and have the same height. This clear separation of
the transversal and longitudinal maxima can be used to determine the polarization of tachyon
radiation, in particular to identify longitudinal quanta, even in a flux overwhelmingly photonic.

The angular integrations of the differential cross sections (3.8) and (3.13) can easily be
carried out,

σ T ∼ 27π

3

αqh̄
2

mr5
Bk5

e ε
, σ L ∼ 29π

3

αqm
2
t mc4

h̄2r5
Bk9

e ε
, (3.14)

where ε =
√(

mυ2
e

/
2
)2

+ m2
t c

4. The electronic and tachyonic wave vectors relate to the speed
of the ejected electron as h̄ke ≈ mυe and h̄k ≈ ε/c, respectively, since the ionization energy
is neglected in the Born approximation. The total photonic cross section σ ph is recovered
from the transversal section by dropping the tachyon mass in ε and identifying tachyonic with
electric charge. The ratios of the total cross sections read

σ T

σ ph
∼ q2

e2

mυ2
e

2ε
,

σ L

σ T
∼ 4

m2
t m

2c4

h̄4k4
e

, (3.15)

where q2/e2 ≈ 1.4 × 10−11 and mt/m ≈ 1/238, cf after (2.31) and (3.8). For instance, if
υe/c ≈ 0.1, we find ε ≈ mc2/153, so that the transversal, longitudinal and photoelectric
sections compare as σ T/σ ph ≈ 1.1 × 10−11 and σ L/σ T ≈ 0.71.
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To reach the ionization threshold, we turn to the dipole approximation of the cross sections
(3.2)–(3.4), using the exact eigenfunction of the scattering state. In the absorption rate (3.2),
we substitute the current defined after (3.4) and in (2.11), and expand (i.e. drop) the exponential
in the integral, replacing

εk,λjmn eikx ≈ −2iqc2u∗
eεk,λ∇um. (3.16)

We take the ground state eigenfunction u0 defined before (3.7) as initial state um. The final
state is the exact Coulomb wavefunction with the asymptotic limit ue ∼ (2ωe)

−1/2L−3/2 eikex,
which admits the expansion [19–23],

ue = 1

2(2ωe)1/2L3/2kerB

∞∑
l=0

il(2l + 1) e−iδl Rke,l(r)Pl(cos θ), (3.17)

where cos θ = ke,0r0 and ke = |ke|. The wavefunctions (3.17) are normalized to
(2ωe)

−1(2π/L)3δ(k − k′). The phase shifts δl will not be needed in the following. We
note P0 = 1 and P1 = cos θ , as well as the radial l = 1 function,

Rk,1 = 2
√

2π

3r
1/2
B

√
k
(
1 + k2r2

B

)
1 − e−2π/(krB)

re−ikr
1F1

(
2 +

i

krB
; 4; 2i kr

)
. (3.18)

The orthogonality relation,∫
Pi(εk,λr0)Pl(ke,0r0) d�r0 = 4πδil

2l + 1
Pl(εk,λke,0), (3.19)

(solid angle integration) leads to selection rules, so that only the l = 1 term in (3.17) is
required. In fact, by means of (3.16), (3.18) and (3.19),∫

εk,λjmn d3x ≈ 4πqc2 eiδ1

√
2ωeker

2
BL3/2

εk,λke,0

∫ ∞

0
u0R

∗
ke,1r

2 dr, (3.20)

where ωe ≈ mc2/h̄, and u0 is the ground state normalized as stated before (3.7). The
integration over the confluent hypergeometric function is standard,∫ ∞

0
r3+n dr e−(1/rB−ike)r

1F1

(
2 − i

kerB
; 4;−2iker

)
= �(4 + n)r4+n

B(
1 + k2

e r
2
B

)2

(
1 − ikerB

1 + ikerB

)−i/(kerB)

× (1 − ikerB)−n
2F1

(
−n, 2 − i

kerB
; 4; 2ikerB

1 + ikerB

)
, (3.21)

where 2F1 on the right-hand side is a polynomial of order n. We put n = 0, and assemble the
cross sections (3.4) via (3.2), (3.20), (3.18) and (3.21) as

dσ T
λ ∼ 26παqh̄b(kerB)

mck
(
1 + k2

e r
2
B

)3 (εk,λke,0)
2 d�, b(x) := exp(−4 arctan x/x)

1 − exp(−2π/x)
. (3.22)

Here, αq is the tachyonic fine structure constant defined after (3.8), and the exponential
containing the arctan is just the square of the factor with the imaginary exponent on
the right-hand side of (3.21), 2i arctan x = log((1 + ix)/(1 − ix)). Principal values are
implied, 0 � arctan � π/2, and b(x) admits the expansions e−4(1 + 4x2/3 + · · ·) and
(2π)−1x(1 − π/x + · · ·). The tachyonic energy h̄ω accounts for the ionization energy E0 and
the kinetic energy Ee = h̄2k2

e

/
(2m) of the ejected electron, so that h̄ω/E0 = 1 + k2

e r
2
B, where

E0 = h̄2
/(

2mr2
B

)
. The tachyonic dispersion relation reads ch̄k =

√
(h̄ω)2 + (mtc2)2, cf after

(2.14). Hence,

dσ T
λ ∼ 27παqr

2
BE4

0b(kerB)

(h̄ω)3
√

(h̄ω)2 + (mtc2)2
(εk,λke,0)

2 d�. (3.23)
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The Born approximation (3.8) is recovered in the limit kerB 
 1, if we put h̄ω/E0 ≈ k2
e r

2
B and

expand b(x); only the small relativistic correction ∝ k/ke escapes in the dipole approximation.
We turn to the longitudinal cross section (3.4), expand the exponential in (3.3) to first

order, and replace ρmn eikx ≈ 2iωequ∗
eumkx. (The zeroth order vanishes, as the bound states

are orthogonal to the continuous spectrum.) We take the ground state u0 as initial state um,
and the final state ue expanded as in (3.17). We thus find, by means of (3.19),∫

ρmn eikx d3x ≈ 2πq
√

2ωek eiδ1

kerBL3/2
k0ke,0

∫ ∞

0
u0R

∗
ke,1r

3 dr, (3.24)

where ke,0 and k0 denote the electronic and tachyonic unit wave vectors. The integration
is again standard, via (3.21) with n = 1. (On the right-hand side of (3.21), this amounts
to putting n = 0 and to add a factor of 2rB(1 + k2

e r
2
B)−1.) The longitudinal section (3.4) is

assembled by substituting (3.24) together with (3.18) and (3.21) into the transition rate (3.3),

dσ L ∼ 28παqc
3mm2

t r
4
B

h̄3k
(
1 + k2

e r
2
B

)5
b(kerB)(k0ke,0)

2 d�. (3.25)

The factor b(x) is defined in (3.22), and we may rewrite this as, cf (3.23),

dσ L ∼ 27παqr
2
Bm2

t c
4E4

0b(kerB)

(h̄ω)5
√

(h̄ω)2 + (mtc2)2
(k0ke,0)

2 d�. (3.26)

In the limit kerB 
 1, we recover the Born approximation (3.13), cf after (3.23). The angular
parametrization in the differential sections (3.23) and (3.26) can be chosen as in (3.8) and
(3.13). Thus the total cross sections σ T,L are obtained by replacing (εk,λke,0)

2 d� in (3.23)
and (k0ke,0)

2 d� in (3.26) by a factor 4π/3. At the ionization threshold, in the limit h̄ω → E0,

σ T ∼ 29π2

3 e4

αqr
2
BE0√

E2
0 + (mtc2)2

, σ L ∼ 29π2

3 e4

αqr
2
B(mtc

2)2

E0

√
E2

0 + (mtc2)2
, (3.27)

where e ≈ 2.718 and E0/(mtc
2) ≈ Z2/158, cf after (2.31) and (3.8). This limit is studied

in greater detail for Rydberg states in section 4. The electromagnetic counterpart to the
transversal section is obtained by replacing αq → αe and putting the tachyon mass to zero,
like in Born approximation.

Finally, the tachyonic recombination cross sections are found by balancing emission and
absorption rates, σ T

rec = 2(k/ke)
2σ T and σ L

rec = (k/ke)
2σ L, reflecting the symmetry of the

Einstein coefficients in (2.23)–(2.26). The factor of 2 is the weight of two transversal degrees,
and this symmetry extends as it stands to all s-states. More explicitly,

σ T
rec = h̄2ω2 + m2

t c
4

mc2Ee
σ T, σ L

rec = h̄2ω2 + m2
t c

4

2mc2Ee
σ L, (3.28)

where Ee and h̄ω = (
1 + k2

e r
2
B

)
E0 are the energies of the incident electron and the emitted

tachyon. These relations apply to both limits, Born and dipole, of course. The recombination
cross sections refer to electron capture in the empty K-shell, irrespective of the spin. The
ionization cross sections σ T,L refer to a single electron in the K-shell. At the ionization
threshold, we find the ratio σ L/σ T ∼ m2

t c
4
/
E2

0 ≈ 2.5 × 104/Z4, as well as

σ L

σ ph
∼ q2

e2

mtc
2

E0

√
1 + (E0/mtc2)2

,
σ L

rec

σ
ph
rec

∼ 1

2

(
m2

t c
4

E2
0

+ 1

)
σ L

σ ph
. (3.29)

In the case of low charge numbers, (Z2/158)2 � 1, cf after (3.27), we estimate σ L/σ ph ≈
2.2 × 10−9/Z2 and σ L

rec

/
σ

ph
rec ≈ 2.76 × 10−5/Z6. These ratios are not very promising yet, but

can be greatly improved by replacing the ground state by a highly excited s-state, as is done
in the next section.
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4. Tachyonic ionization of Rydberg states

We derive the tachyonic ionization cross sections of hydrogenic Rydberg states with zero
angular momentum, s-states,

un = (2mc2/h̄)−1/2Rn0(r),

Rn0(r) = 1√
π(rBn)3/2

e−r/(rBn) 1

n
L

(1)
n−1

(
2r

rBn

)
(4.1)

with n in the range 102–103 and beyond [19–23]. The L(α)
n (x) are Laguerre polynomials,

L
(α)
0 (x) = 1 and L

(1)
n−1(x) = n1F1(1 − n; 2; x). The normalization is 4π

∫ ∞
0 R2

n0(r)r
2 dr = 1,

which follows from the orthogonality relation,∫ ∞

0
L(α)

n (r)L(α)
m (r) e−r rα dr = δmn�(α + n + 1)/�(n + 1), (4.2)

and the recursion relation L(α)
n = L(α+1)

n − L
(α+1)
n−1 . Hence,

∫ ∞
0 L

(1)2
n−1(r) e−r r2 dr = 2n2 and∫ ∞

0 L
(1)2
n−1(r) e−r r3 dr = 6n3, so that the radial expectation value reads [19]

〈r〉 = 4π

∫ ∞

0
R2

n0(r)r
3 dr = 3

2 rBn2, (4.3)

where rBn2 is the semiclassical orbital radius.
The Born approximation of the ground state cross sections can easily be generalized

to excited s-states; we only indicate the alterations in the formulae of section 3 to that
effect. We take un in (4.1) as the initial state, which replaces um or u0 in section 3. The
integral

∫
un ei(k−ke)x d3x, cf (3.7), is calculated via the Fourier transform

FR(k) :=
∫

Rn0 e−ikx d3x = 2i(−)n+1√πrBn

k(1 + (krBn)2)
(yn − y−n), y := 1 − ikrBn

1 + ikrBn
, (4.4)

where we used,∫ ∞

0
L

(1)
n−1

(
2r

rBn

)
e−(1/(rBn)+ik)r r dr = (−)n+1r2

Bn3

1 + (krBn)2
yn. (4.5)

We substitute k → k − ke into (4.4), and expand in k/ke � 1, so that |k − ke| ≈
ke(1 − (k/ke) cos θ), as well as in 1/(kerBn), arriving at a slightly changed equation (3.7).
On the left-hand side of (3.7), u0 is replaced by un, and on the right-hand side we rescale the
Bohr radius, rB → rBn, and add a factor of n. We thus have to multiply the transversal cross
section (3.8) by a factor of n2 and to replace the Bohr radius by rBn, which results in an overall
rescaling by n−3.

We turn to the longitudinal cross section. The generalization of the Fourier transform
(3.11) is (2mc2/h̄)−1/2FR(k), cf (4.4). The matrix element (3.12) is calculated in Fourier
space, with un in (4.1), via

∫
u∗

1u2 eikx d3x = (2π)−3
∫

û∗
1(q)û2(q − k) d3q; the convention

for Fourier transforms is û = ∫
ue−iqx d3x. We find, cf (3.12),∫

uneikx(e−ikex + ψ∗
ke

)
d3x =

∫
FR(|q − k|)
(2mc2/h̄)1/2

(
δ(q − ke) +

ψ̂ke(q)

(2π)3

)
d3q, (4.6)

where ψ̂ke is defined in (3.10). In the FRψ̂-term on the right-hand side, we approximate FR

by a δ-function,√
π(rBn)3/2FR(|q|) → (2π)3δ(q), (4.7)

applicable for large rBn. (It is easy to see that (4.7) is a limit definition of the Dirac function, by
means of the real space representation (4.4), the 1/(rBn)-scaling of the Laguerre polynomial
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in (4.1), and the normalization L
(1)
n−1(0) = n.) The integrations in (4.6) are trivial, and

we subsequently perform the approximations pointed out after (4.5), that is, expansions in
k/ke � 1 and 1/(kerBn) � 1. We arrive at (3.12), with the right-hand side multiplied by n
and rB replaced by rBn, which amounts to an overall rescaling by n−3/2. On the left-hand side
of (3.12), the only change is u0 → un, cf (4.1). The longitudinal cross section (3.13) is thus
recovered, rescaled by a factor of n−3, like the transversal section discussed above.

As for the recombination cross sections, identities (3.28) apply to any principal quantum
number as long as the electron gets caught in an s-state. Energy conservation implies
h̄ω = (1 + (kerBn)2)En, where En = h̄2

/(
2mr2

Bn2
)

is the ionization energy of the nth
level, so that En[Ry] = Z2/n2 with 2 Ry = 27.21 eV, and ω is the excess energy carried by
the emitted tachyon. Here, rB = h̄/(mcαZ) is the ground state Bohr radius with αZ ≈ Z/137
as defined before (3.5), and mtc

2 ≈ 158 Ry, cf (3.27). In Born approximation, kerBn 
 1,
we may neglect the ionization energy and approximate h̄ω ≈ Ee in (3.28). Moreover, the
n−3-scaling of the cross sections also applies to small n, and capture in s-states is always
dominant [22, 23]. The total recombination cross sections, obtained by summation over all
s-states, are thus given by (3.28), with (3.14) substituted and multiplied by ζ(3) ≈ 1.202.

The dipole approximation is harder to deal with, but it gives access to the ionization
threshold, which is the most likely place in momentum space to find superluminal quanta, cf
the discussion after (4.31). We again take the calculation of the ground state cross sections
as the starting point, and proceed by pointing out the modifications required by excited
s-states. The technical changes needed for large quantum numbers get quite extensive, due to
the high-order polynomials occurring in the matrix elements; asymptotic approximations to
these polynomials are derived in the appendix.

We start with the transversal matrix element,
∫

εk,λjmn d3x, cf (3.20). In the integral
on the right-hand side of (3.20), we have to replace u0 by −rBu′

n, cf (3.16), where we use
∇Rn0 = R′

n0r0 when replacing the initial state um by un in (4.1). In the longitudinal element
(3.24), we just have to replace u0 by un to obtain the dipole approximation of

∫
ρmn eikx d3x.

These matrix elements, (3.20) and (3.24) (with the indicated changes), can be reduced to
integrals [24]∫ ∞

0
r3 dr e−(1/(rBn)−ike)r

1F1(m; 4; 2r/(rBn))1F1(2 − iρ; 4;−2iker)

= 6(rBn)4(−)m

(1 + (kerBn)2)2
ym−iρ

2F1(m, 2 − iρ; 4; 1 − y2), (4.8)

with (negative) integer m. Here, we have introduced the shortcuts,

y = 1 − ikerBn

1 + ikerBn
, 1 − y2 = 4ikerBn

(1 + ikerBn)2
, ρ = 1

kerB
. (4.9)

These integrals are real; to see this, we put z = 1−y2 and note the symmetries z∗ = z/(z−1)

and y∗ = y−1, as well as

2F1(m, β; 4; z) = (1 − z)−m
2F1(m, 4 − β; 4; z/(z − 1)). (4.10)

Moreover, ym−iσ = e−2(σ+im) arctan(n/ρ), with real σ and principal values like in (3.22); the
expansions of arctan x read x − x3/3 + · · · and π/2 − 1/x + · · · . For the integrals (4.8) to be
applicable, we first have to express the Laguerre polynomials occurring in the matrix elements
(4.17) and (4.19) in terms of L

(3)
k , and then use

L
(3)
k (x) = 1

6 (k + 3)(k + 2)(k + 1)1F1(−k; 4; x), (4.11)



Tachyonic ionization cross sections of hydrogenic systems 2215

where k � −3. The polynomial L
(1)
n−1 and its derivative, dL

(1)
n−1/dx = −L

(2)
n−2, as well as

xL
(1)
n−1, can be written as linear combinations of L

(3)
k , by means of two recursion relations.

One was indicated after (4.2) and gives

L
(1)
n−1 = L

(3)
n−1 − 2L

(3)
n−2 + L

(3)
n−3 = L

(4)
n−1 − 3L

(4)
n−2 + 3L

(4)
n−3 − L

(4)
n−4,

dL
(1)
n−1

/
dx = −(

L
(3)
n−2 − L

(3)
n−3

)
.

(4.12)

The second type of recursion needed is xL(α+1)
n = (n + α + 1)L(α)

n − (n + 1)L
(α)
n+1, which gives,

in combination with (4.12),

xL
(1)
n−1 = −n

(
L(3)

n − 4L
(3)
n−1 + 6L

(3)
n−2 − 4L

(3)
n−3 + L

(3)
n−4

)
. (4.13)

We use the shortcut,

Fm := 2F1(m, 2 − iρ; 4; 1 − y2), ρ = 1/(kerB), (4.14)

and the hypergeometric contiguous relations [24],

(n − 2)y2F3−n = −(n + 2)F1−n + [(n − iρ)y2 + (n + iρ)]F2−n,

(n + 3)F−n = [(n + 1 − iρ)y2 + (n + 1 + iρ)]F1−n − (n − 1)y2F2−n.
(4.15)

By iterating the first identity (with n and n − 1), we find

(n − 2)(n − 3)y4F4−n = −(n + 2)[(n − 1 − iρ)y2 + (n − 1 + iρ)]F1−n

+ [a∗
0y4 + (n2 − n + 2 + 2ρ2)y2 + a0]F2−n, (4.16)

where a0 := (n + iρ)(n − 1 + iρ). The subsequent matrix elements are linear combinations of
F1−n and F2−n, which are polynomials for negative integer index.

The transversal element (3.20) (with the modification explained before (4.8)) reads

RT :=
∫ ∞

0
R′

n,0R
∗
ke,1r

2 dr = −
2
√

2ke
(
1 + k2

e r
2
B

)
3r3

Bn7/2
√

1 − e−2πρ

×
∫ ∞

0
r3 dr e−(1/(rBn)−ike)r

(
L

(3)
n−1 − L

(3)
n−3

) (
2r

rBn

)
1F1(2 − iρ; 4;−2 iker), (4.17)

where we made use of (4.12). The radial wavefunctions Rn,0 and Rke,1 are defined in (4.1) and
(3.18), respectively. By virtue of (4.11) and (4.8)

RT = A(2n(n + 2)F1−n + (n − 1)pF2−n),

p := (−n + iρ)y2 − (n + iρ) = 2n(ρ2 + n2)(ρ + in)−2,

A :=
2rB

√
2ke

(
1 + k2

e r
2
B

)
3
√

1 − e−2πρ

(−)nn3/2y1−n−iρ

(1 + (kerBn)2)2
, y = ρ − in

ρ + in
,

(4.18)

where Fm is defined in (4.14), y in (4.9), and ρ = 1/(kerB). After the integration (4.8), we
used the first recursion relation in (4.15).

The longitudinal matrix element (3.24) is modified as explained before (4.8),

RL :=
∫ ∞

0
Rn,0R

∗
ke,1r

3 dr =
√

2ke
(
1 + k2

e r
2
B

)
3rBn3/2

√
1 − e−2πρ

×
∫ ∞

0
r3 dr e−(1/(rBn)−ike)r

2r

rBn
L

(1)
n−1

(
2r

rBn

)
1F1(2 − iρ; 4;−2iker). (4.19)
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Here, we substitute (4.13), and perform the integration by means of (4.11) and (4.8). We then
employ the recursion relations (4.15) and (4.16) to arrive at

RL = − r2
Bn2A

2y
((n + 2)q1F1−n + (n − 1)q2F2−n),

q1 := 2(2n − iρ)y2 + 8ny + 2(2n + iρ) = 8nρ2(ρ + in)−2,

q2 := a∗
0y

4 + 4n(n − iρ)y3 + 2(3n2 + n + ρ2)y2 + 4n(n + iρ)y + a0

= 8nρ2(ρ2 + n2)(ρ + in)−4, (4.20)

where A, y and Fm are defined in (4.18) and (4.14), and a0 in (4.16).
Approximations of the hypergeometric polynomials F1−n and F2−n are indispensable

even for moderate n, as demonstrated by the exponential in (4.22). The hypergeometric Fm in
(4.14) contracts to a confluent function in the limit ρ → ∞ (with the other parameters fixed),
according to the limit definition 2F1(a, b; c; z/b) → 1F1(a; c; z) for |b| → ∞. Hence,
Fm → 1F1(m; 4; 4n), for fixed m and n, since 1 − y2 ∼ 4in/ρ if n/ρ � 1. We do not
need uniformity here, as no further integrations are necessary to find the cross sections. The
confluent hypergeometric function so obtained is a Laguerre polynomial, cf (4.11). Performing
the limit ρ → ∞ in the matrix elements (4.18) and (4.20), we find

RT ∼ 12A(n + 1)−1(L(3)
n−1(4n) + L

(3)
n−2(4n)

)
,

RL ∼ −2r2
Bn2RT, A ∼ (23/2/3)rBk1/2

e (−)nn3/2 e−2n.
(4.21)

The exponential in A, cf (4.18), stems from the expansion of the arctan stated after (4.10). An
Airy approximation of Laguerre polynomials was derived in [25], from which we infer,

L
(3)
n−1(4n) + L

(3)
n−2(4n) = 21/3(−)n−1 e2n

8 × 31/3�(1/3)n2/3
(1 + O(n−2/3)). (4.22)

Hence, in the limit ρ → ∞ and for large n,

RT ∼ −25/6rBk
1/2
e n−1/6

31/3�(1/3)
, (4.23)

and RL follows from (4.21).
The opposite limit, ρ � 1, with n fixed, can be settled by the ascending series expansion

of the hypergeometric functions in (4.18) and (4.20), since 1 − y2 ∼ −4iρ/n. In leading
order, it is sufficient to put F1−n ∼ F2−n ∼ 1 in the matrix elements, so that

RT ∼ −4π−1/2rBk1/2
e ρ5/2n−3/2, RL ∼ 8π−1/2r3

Bk1/2
e ρ9/2n−3/2. (4.24)

In the approximations (4.21) and (4.24), there is no expansion in the quantum number n
involved. In (4.24), the asymptotics is based on ρ � 1, so that higher orders can be obtained
from the hypergeometric series. In (4.21), the limit ρ → ∞ is actually carried out.

The limit ρ/n � 1 with ρ 
 1 and the limit n/ρ � 1 with n 
 1 amount to asymptotic
expansions of the hypergeometric polynomials in (4.18) and (4.20) with two large parameters.
The steepest descent approximation of RT,L for large but finite ρ and n is derived in the
appendix, cf (A.27) and (A.28). The squared matrix elements read

|RT|2 = 25/3r2
Bkeα

8/3
∞ X

32/3�2(1/3)n1/3
(
1 + α2∞

)4/3 , |RL|2 = 211/3r6
Bken

11/3α
20/3
∞ X

32/3�2(1/3)
(
1 + α2∞

)10/3 , (4.25)
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where the ratio α∞ := ρ/n is kept fixed, and

X := 1 +
25/6�(1/3)

√
α∞ +

√
α2∞ + 4

31/3�(2/3)(α∞n)1/6
(
1 + α2∞

)1/6

+
22/3�2(1/3)

√
α2∞ + 4

32/3�2(2/3)(α∞n)1/3
(
1 + α2∞

)1/3 + O(n−1/2, ρ−1/2). (4.26)

In the limit α∞ → ∞, we recover RT,L in (4.23) and (4.21), including the next two orders.
(The asymptotics in the appendix is not really designed for this, nevertheless this limit can
be carried out in the matrix elements.) Expansion (4.26) is also valid for small α∞, provided
ρ = α∞n stays large.

We turn to the cross sections. The squared current matrix elements in (3.2) are compiled
from (3.20), and the elements (3.3) of the charge density are obtained from (3.24), both
modified as explained before (4.8),∣∣∣∣

∫
εk,λjmn eikx d3x

∣∣∣∣
2

∼ 16π3αqh̄
3c

L3m2r2
Bk2

e

|RT|2(εk,λke,0)
2,

∣∣∣∣
∫

ρmn eikx d3x

∣∣∣∣
2

∼ 16π3αqh̄ck2

L3r2
Bk2

e

|RL|2(k0ke,0)
2.

(4.27)

The matrix elements RT,L are stated in (4.18) and (4.20), in terms of hypergeometric
polynomials, and αq is the tachyonic fine structure constant, cf (3.8). We thus arrive at,
cf (3.2)–(3.4),

dσ T
λ ∼ 2παqh̄

mcr2
Bkek

|RT|2(εk,λke,0)
2 d�,

dσ L ∼ 2παqc
3m2

t m

h̄3r2
Bkek

|RL|2(k0ke,0)
2 d�.

(4.28)

In the following, we study limit cases, based on the approximations (4.21)–(4.26) of RT,L.
First, as a consistency check, we recover from (4.18)–(4.24) the cross sections previously

derived. We invoke energy conservation at the nth level, cf after (4.7), as well as the tachyonic
dispersion relation stated before (3.23). The limit ρ → ∞ with n = 1 in (4.21) can be traced
back to the ground state ionization cross sections (3.22) and (3.25), if we replace there b(kerB)

by its limit value e−4. The Born approximation, the limit ρ → 0 with arbitrary n, is recovered
from (4.24). (The transversal section was derived in (3.8) for ground state ionization, and
its n3-scaling for general s-states is explained after (4.5). The n3-scaling of the longitudinal
section (3.13) was derived after (4.7).) Finally, the cross sections (4.28) for n = 1 and arbitrary
ρ can directly be obtained from RT,L in (4.18) and (4.20), since F0 = 1 and F1 drops out. In
this way, the ground state ionization (3.22) and (3.25) is recovered for finite ρ.

The matrix elements RT,L in (4.18) and (4.20) are polynomials and can be used in the
cross sections (4.28) without approximations, as long as the quantum number n stays small.
Rydberg states do not qualify in this respect, cf the exponential in (4.22), which takes us to the
most interesting limit, ρ → ∞ and n 
 1, cf (4.23), accounting for highly excited states just
ionized so that the ejected electron is free, but barely so, with zero momentum. In this limit,
at the ionization threshold, the cross sections (4.28) simplify to

dσ T
λ ∼ κ0αqh̄

2(εk,λke,0)
2 d�

m
√

(h̄ω)2 + (mtc2)2
, κ0 := 22/34π

32/3�2(1/3)n1/3
, (4.29)
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dσ L ∼ m2
t c

4

E2
n

κ0αqh̄
2(k0ke,0)

2 d�

m
√

(h̄ω)2 + (mtc2)2
,

1

E2
n

= 4(rBn)4 m2

h̄4 . (4.30)

This is the leading order, the two next-to-leading orders are obtained by adding the factor X

in (4.26) with α∞ = ∞. This limit smoothly extends to finite electron energy, ρ 
 1, by a
rescaling of the constant κ0 in the cross sections

κT := κ0α
8/3
∞ X(

1 + α2∞
)4/3 , κL := α4

∞(
1 + α2∞

)2 κT, (4.31)

which means to replace κ0 in (4.29) by κT and in (4.30) by κL. The factors κT,L can be read
off from the squared RT,L in (4.25), where α∞ = ρ/n and X stands for expansion (4.26).
The applicability of cross sections (4.29)–(4.31) hinges upon ρ = 1/(kerB) 
 1, which is
tantamount to Ee � En=1, where Ee = h̄2k2

e

/
(2m) is the energy of the ejected electron and

En=1 is the ground state ionization energy, cf after (4.7).
Cross sections (4.29) and (4.30) account for ionization in the limit ρ → ∞, n 
 1.

This limit, the ionization threshold, is of crucial importance for the detection of longitudinal
radiation, as the longitudinal section overpowers the transversal one due to the n-scaled Bohr
radius, cf (4.30). We show that the resulting n4-factor in the longitudinal section has a marked
impact on the ionization at Rydberg levels of order n ≈ 103, as it counteracts the very small
ratio of tachyonic and electric fine structure constants in the cross section ratios. The total cross
sections σ T,L are obtained by replacing (εk,λke,0)

2 d� and (k0ke,0)
2 d� in (4.29) and (4.30)

by a factor of 4π/3. The total photonic cross section σ ph is recovered from the transversal
section in the limit of zero tachyon mass, by identifying tachyonic with electric charge as
was done in (3.15). We note the ratio of the tachyonic and electric fine structure constants,
q2/e2 ≈ 1.4 × 10−11, as well as the tachyon–electron mass ratio, mt/m ≈ 1/238, cf after
(2.31) and (3.8). The cross section ratios, based on (4.29) and (4.30), read accordingly,

σ L

σ T
∼ m2

t c
4

E2
n

≈ 2.5 × 104 n4

Z4
,

σ L

σ ph
∼ q2

e2

mtc
2

En

≈ 2.2 × 10−9 n2

Z2
. (4.32)

These ratios only apply at the ionization threshold, ke = 0, but can easily be extended to finite
electronic momentum, ke � 1/rB, by virtue of, cf (4.31),

κL

κT
= 1

(1 + (kerBn)2)2
= E2

n

h̄2ω2
, (4.33)

where En is the ionization energy at the nth level, cf after (4.7). Subject to this relation, the
ratios (4.32) extend to finite ke as

σ L

σ T
∼ m2

t c
4

h̄2ω2
,

σ L

σ ph
∼ q2

e2

mtc
2

h̄ω
, (4.34)

where the tachyonic energy ω(ke, n) is determined by the second equality in (4.33).
The velocity of the ionizing tachyon, inferred from

En + Ee = mtc
2√

υ2/c2 − 1
, (4.35)

is another reason why cross sections (4.29) and (4.30) are of special interest. The energetically
minimal ionization of Rydberg states at the threshold Ee = 0 (in practice, for Ee � En or
ke � 1/(rBn), cf after (4.31)) is effected by very speedy tachyons,

υ

c
∼ mtc

2

En

≈ 158
n2

Z2
. (4.36)
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This, together with the cross section ratio σ L/σ ph in (4.32), makes Rydberg states a serious
contender for the detection of the longitudinal radiation. Moreover, as pointed out after (3.13),
the angular extrema of the transversal and longitudinal differential sections can be used to
discriminate photons and longitudinal tachyons. The angular parametrization of the ground
state sections, cf after (3.8) and (3.13), also applies to cross sections (4.28)–(4.30).

Another striking result relates to recombination at the ionization threshold. The identities
(3.28) connecting ionization and recombination cross sections remain valid for angular
independent excited states. On the basis of ionization ratios (4.32),

σ L
rec

σ
ph
rec

∼ m2
t c

4

2E2
n

σ L

σ ph
≈ 2.76 × 10−5 n6

Z6
, (4.37)

so that already at n ∼ 10 (and low Z) recombination with thermal electrons is more likely to
be accompanied by the emission of longitudinal quanta than photons. The reverse process,
ionization, can be used to detect this radiation directly, though in this case quantum numbers
of order n ∼ 104 are needed to achieve a moderate σ L/σ ph ratio.

5. Conclusion

We have given a quantitative discussion of radiative transitions effected by superluminal
quanta. Induced and spontaneous transitions between hydrogenic bound states, as well as
tachyonic ionization and recombination cross sections, were investigated. The subluminal
particles were treated as scalar and mostly non-relativistic, but the tachyonic 4-potential can
also be coupled to Dirac spinors by minimal substitution, similarly as done in section 2 for
the Klein–Gordon field [18]. As for relativistic ejection energies, the longitudinal relativistic
cross section needs to be calculated from scratch, but the transversal section is obtained by a
simple rescaling of the relativistic photonic cross section. In fact, the only change necessary
for tachyonic γ -rays [26] or even high-energy x-rays is a rescaling with the ratio αq/αe of
the tachyonic and electric fine structure constants, since the tachyon mass drops out in the
dispersion relation at γ -ray energies. We have already seen this rescaling in section 3, though
we were mainly interested in the effect of the tachyon mass in the low-energy, soft x-ray regime,
where the tachyon mass dominates the shape of the transversal section. The longitudinal cross
section, however, depends in any regime on the tachyon mass and vanishes in the zero-mass
limit [27].

The angular dependence of cross sections is perhaps the most practical means to
disentangle transversal and longitudinal radiation. This has been demonstrated here with
ionization cross sections, where the transversal angular maximum corresponds to the
longitudinal minimum. One may expect that the differential cross sections of tachyonic
Compton scattering can also be used to that effect; there should be a transversal and longitudinal
tachyonic counterpart to the Klein–Nishina formula, pertinent to the acceleration of the electron
by the incoming tachyonic wave field, triggering electromagnetic radiation. The tachyonic
Thomson cross section, the non-relativistic classical limit, was already derived in [14], but a
quantum mechanical version is still lacking, especially if the incident tachyonic x-rays have
energies close to the tachyon mass. Another interesting cross section to be scrutinized is the
conversion of tachyonic γ -rays into electron–positron pairs. Pair production by tachyons has
not been studied in any limit and context as yet, e.g. in a Coulomb potential or strong magnetic
field. I surmise that the cross section for the conversion of transversal tachyonic γ -rays is just
the Bethe–Heitler cross section rescaled with the ratio αq/αe, as above.

Other mechanisms for the detection of longitudinal radiation modes have been suggested
with respect to a finite photon mass (i.e. a positive mass-squared), such as a capacitor in a
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perfectly conducting shell, impenetrable for transversal waves [9]. This line of reasoning,
focused on macroscopic current distributions, is unlikely to be applicable to tachyons. At
least, there is no obvious tachyonic counterpart to a perfectly conducting shell or the skin
depth of a conductor, or even to a macroscopic charge density, due to averaging effects caused
by periodic sign changes of the tachyon potential [10].

The decisive advantage of Rydberg states is the n-scaling of the longitudinal cross section,
which counteracts the very small ratio of electric and tachyonic fine structure constants. In
recombination, at the ionization threshold, that is, for the capture of very low energy thermal
electrons, the tachyonic emission is overwhelmingly longitudinal, and it already starts to
outpace electromagnetic emission at n ∼ 10, provided the charge number is kept low. A
more direct detection mechanism is longitudinal ionization, where the cross section starts to
compete with the electromagnetic counterpart at about n ∼ 104, cf (4.32). Up to now, there
is interstellar and increasingly laboratory evidence for Rydberg states of one order less [21].
The angular variation of the ionization cross sections is the same for all s-states, irrespectively
of the quantum number. It is, however, strongly affected by the polarization of the ionizing
radiation and can be used to distinguish longitudinal tachyons from photons.
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Appendix: Asymptotics of high-order hypergeometric polynomials

The matrix elements (4.18) and (4.20) are composed of hypergeometric polynomials depending
on two large parameters. We derive asymptotic approximations in steepest descent, based on
the integral representation [28, 29],

2F1(a, b; c; z) = �(c)(1 − e−2π ia)−1

�(a)�(c − a)

∮
ta−1(1 − t)c−a−1(1 − tz)−b dt, (A.1)

where c is integer, and the integration path is taken as an anticlockwise loop encircling the
points t = 0 and t = 1 and excluding t = 1/z. (This can be checked by expanding in z

and invoking a standard integral representation of the B-function.) We study a special case
where the parameters a and b get simultaneously large, that is, linear combinations of the
hypergeometric polynomials, cf (4.14),

Fm := 2F1(m, 2 − iρ; 4; z), z = 4inρ

(ρ + in)2
, (A.2)

where ρ 
 1 (real) and m = k − n, with k = 1, 2 (or at least k � n) and integer n 
 1. The
goal is to find a workable approximation of these high-order polynomials, for large n and ρ,
keeping the ratio α∞ = ρ/n fixed.

To this end, we reparametrize (A.2), defining α by 2 − iρ = iα(k − n), so that α → α∞
for n, ρ → ∞. The argument z in the hypergeometric function can be expanded in the small
parameter ε defined by

ε =
√

αk + 2i

nα(1 + α2)
, α = ρ + 2i

n − k
, (A.3)
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where Re ε > 0,

z = −4iα

(1 − iα)2
[1 − ε2(1 + iα)2(1 − ε2iα(2 + iα) + · · ·)]. (A.4)

We always assume n 
 1 and ρ 
 1, but we will not make any assumption about the size
of the ratio α∞ = ρ/n. If α∞ is moderate or large, the actual expansion in (A.4) (and in the
subsequent asymptotics) is in α∞ε ∼ n−1/2; if α∞ � 1, the expansion parameter is ε ∼ ρ−1/2.
By definition, ε is small if ρ and n are both large, irrespectively of their ratio α∞ (which is
kept fixed), and α∞ε is small even if α∞ is large.

In (A.1), we identify a = 2 − iρ and b = k − n,

Fk−n = 3eπρ

πρ(1 + ρ2)

∮
t1−iρ(1 − t)1+iρ(1 − tz)n−k dt, (A.5)

and split the integrand into a fast and a slowly varying factor, en log f (t)g(t), where

f (t) = t−iα(1 − t)iα(1 − tz), g(t) = t−1+iαk(1 − t)3−iαk(1 − tz)−k. (A.6)

The saddle point is found by solving f ′(t0) = 0 or 1 − t0z = izα−1t0(1 − t0),

t0 = 1

2
(1 − iα)

[
1 − i(1 + iα)ε

(
1 +

ε2

2

)
+ O(ε4)

]
, (A.7)

with Re ε > 0. (There is a second solution obtained by changing the sign of ε, but only t0 is a
saddle point.) We expand,

log f (t) = log f0 + ϕ(t − t0) + · · · , ϕ(t) := 1
2 t2f ′′

0 /f0 + 1
6 t3f ′′′

0 /f0, (A.8)

where the subscript zeros indicate the argument taken at t0,

log f0 = (1 + iα) log
1 + iα

1 − iα
− 2iα(1 + iα)ε2 + O(ε4),

f ′′
0

f0
= iα(1 − iα − 2t0)

t2
0 (1 − t0)2

= −16αε

1 + α2
+ O(ε2),

f ′′′
0

f0
= −2iα(1 + α2 − 3t0(1 − t0))

t3
0 (1 − t0)3

= −32iα

(1 + α2)2
+ O(ε).

(A.9)

We also expand g(t), and perform the limit ε → 0 in this slowly varying factor,

g0 = (1 + iα)2

4

(
1 + iα

1 − iα

)1−k(1+iα)

,
g′

0

g0
= 4iα − 8

1 + α2
. (A.10)

Only the zeroth order, g0, turns out to be significant, but g′
0 is needed for the error estimate.

Later we will also study certain linear combinations where the first order gives the dominant
contribution, since the zeroth order of the slowly varying factor vanishes for ε → 0, cf (A.19).

We introduce a new integration variable, t = x + ξ , with ξ = (iε/2)(1 + α2), to remove
the quadratic term in ϕ(t), cf (A.8),

nϕ(t) = 4

3
nα(1 + α2)ε3 − 4i nαε2x − 16inαx3

3(1 + α2)2
. (A.11)

The saddle point t0 lies in the lower half-plane, and the integration path in (A.1) is taken
anticlockwise. Extending the path through the saddle point to infinity, we arrive at

Fk−n ≈ 3eπρf n
0 g0

πρ3

∫ +∞

−∞
enϕ(x+ξ)

(
1 + O

(
g′

0

g0
x

))
dx. (A.12)

This can be reduced to Airy functions, by virtue of∫ +∞

−∞
exp(−i(ax + bx3)) dx = 2π

(3b)1/3
Ai

(
a

(3b)1/3

)
(A.13)
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and its a-derivative (needed for the error term). Analytic continuation is implied, both in a
and b, choosing (−b)1/3 = −b1/3 if necessary. (One may view this as a distribution, a limit
definition, b → 0, of the Dirac function 2πδ(a), though we use it with finite b.) Hence,

Fk−n ≈ 3eπρ(1 + α2)2/3

(2αn)1/3ρ3
g0 en log f0 [Ai(λ) + O(λAi′(λ))], (A.14)

λ := (1 + α2)2/3(2αn)2/3ε2 = 22/3(αk + 2i)

(nα)1/3(1 + α2)1/3
, (A.15)

with α and ε defined in (A.3). This expansion applies in the limit n, ρ → ∞, with the fixed
but otherwise arbitrary ratio α∞ = ρ/n. Finally, we note the ascending series of the Airy
function

Ai(λ) = 1 + λ3/6

32/3�(2/3)
− λ

31/3�(1/3)
+ O(λ4), (A.16)

and conclude that only the zeroth order of Ai(λ) is significant in (A.14), so that we can replace
the Airy function and the error term by (32/3�(2/3))−1 + O(λ).

Remark. There is another way to derive (A.14), based on the opposite identification made
in (A.5). That is, we interchange the first two parameters in Fk−n, by choosing b = 2 − iρ
and a = k − n in (A.1). For negative integer a, one of the �-functions in (A.1) gets singular,
but this can be settled by replacing k → k + δ and expanding in δ, to make the coefficient in
front of the loop integral well defined. The integrand is not affected by that. We thus find, as
a counterpart to (A.5), the representation

Fk−n = 3i(−)n−k+1
∮

t k−n−1(1 − t)3−k+n(1 − tz)−2+iρ dt

π(n − k + 3)(n − k + 2)(n − k + 1)
. (A.17)

The integration loop is again anticlockwise encircling the interval [0, 1], with 1/z excluded.
We write k − n = (2 − iρ)/(iα), and factorize the integrand as eiρ log f (t)g(t), where

f (t) = t−1/(iα)(1 − t)1/(iα)(1 − tz), g(t) = t−1+2/(iα)(1 − t)3−2/(iα)(1 − tz)−2. (A.18)

This is an alternative starting point for the steepest descent, equivalent to (A.5) and (A.6) as
long as α∞ is kept constant, which can be used as a consistency check.

We turn to the hypergeometric aggregates in section 4,

Hk,n := Fk−n − 1 + iα∞
1 − iα∞

Fk+1−n, (A.19)

which arise in the leading order of the 1/n-expansion of (4.18) and (4.20), cf (A.27). To relate
this to the foregoing discussion, we consider Fl−n, cf (A.2), with integer l, and note that the
argument z in (A.2) does not depend on k or l, nor does the ε-expansion of z in (A.4), even
though ε depends on k. We split the integrand defining Fl−n according to (A.5) (k → l) into
a fast and slowly varying part, en log f (t)g(t)(1 − tz)k−l , where f (t) and g(t) are defined in
(A.6). Identifying l = k + 1, we find

Hk,n ≈ 3eπρ

πρ3

∮
en log f (t)h(t) dt, h(t) :=

(
1 − 1 + iα∞

1 − iα∞

1

1 − tz

)
g(t). (A.20)

The saddle point formulae derived in (A.7)–(A.9), (A.11) and (A.13) remain unchanged, and
(A.10) is replaced by

h0 := h(t0) ≈ 2εα∞g0, h′
0 ≈ 4iα∞

1 + α2∞
g0 (A.21)
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with g0 in (A.10). We thus find, analogously to (A.14),

Hk,n ≈ 3eπρ
(
1 + α2

∞
)2/3

(2α∞n)1/3ρ3
g0 en log f0

×
[

−22/3α∞(
1 + α2∞

)1/3

Ai′(λ)

(α∞n)1/3
+ 2εα∞Ai(λ) + O

(
α∞ |ελ|

|α∞k + 2i|
)]

, (A.22)

where λ is defined in (A.15) and log f0 in (A.9). Here, we may approximate, cf (A.16) and
the error term in (A.22), Ai′(λ) ≈ −(31/3�(1/3))−1 and Ai(λ) ≈ (32/3�(2/3))−1.

The asymptotic formula (A.14) for Fk−n as well as (A.22) can be further simplified by
systematically expanding in 1/n. We start with (A.3),

α = α∞(1 + κ/n + O(n−2)), κ := k + 2i/α∞,

ε = κ1/2(1 + α2
∞

)−1/2
n−1/2(1 + O(κ/n)),

(A.23)

and note the 1/n-expansion of log f0 in (A.9),

log f0 =
(

1 + iα∞ +
iα∞κ

n

)
log

1 + iα∞
1 − iα∞

+ O(n−2). (A.24)

Since α∞ is positive, we can identify the logarithm with 2i arctan α∞. As for g0 in (A.10), we
may there simply replace α by α∞, up to terms of O(1/n). The final form of (A.14) is thus:

Fk−n ≈ 31/3
(
1 + α2

∞
)2/3

(1 + iα∞)2

27/3�(2/3)(α∞n)10/3
exp(πnα∞)

× exp[2i(n(1 + iα∞) − (k + 1)) arctan α∞](1 + O(λ)), (A.25)

where λ ∝ n−1/3 defines the error term, cf (A.15). The analogous expansion of the aggregates
(A.22) reads

Hk,n ≈ 32/3α∞
(
1 + α2

∞
)1/3

(1 + iα∞)2

25/3�(1/3)(α∞n)11/3
exp(πnα∞)

× exp[2i(n(1 + iα∞) − (k + 1)) arctan α∞]

×
(

1 +
21/3�(1/3)

√
α∞k + 2i

31/3�(2/3)(α∞n)1/6
(
1 + α2∞

)1/6 + O(n−1/2, ρ−1/2)

)
, (A.26)

where �(1/3) ≈ 2.679 and �(2/3) ≈ 1.354.
Returning to the matrix elements RT,L in (4.18) and (4.20), we find in leading, non-

vanishing order, up to terms of O(1/n),

RT ∼ 2n2AH1,n, RL ∼ 4r2
Bn2ρ2AH1,n

(1 − iα∞)2y
= −4α2

∞r2
Bn4

1 + α2∞
AH1,n, (A.27)

with H1,n in (A.19). The shortcuts A and y are defined in (4.18). Finally, by virtue of (A.26),

AH1,n ≈ −k
1/2
e rBα

4/3
∞

31/321/6�(1/3)
(
1 + α2∞

)2/3
n13/6

(1 + · · ·), (A.28)

where the parentheses are to be completed as in (A.26), with k = 1 and α∞ = ρ/n. The
expansion of the squared matrix elements is stated in (4.25) and (4.26).
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